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Kaluza-Klein monopole system in parabolic coordinates by 
functional integration 
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Received 23 October 1990 

Abstract. The Kaluza-Klein monopole system is quantized via path integrals in parabolic 
coordinates. The wavefunctions and energy spectrum of the discrete and continuous 
spectrum are explicitly evaluated. 

1. Introduction 

In the framework of quantum mechanics magnetic monopoles have been first discussed 
by Dirac in his classical paper 111. He described them as quantized singularities in 
the electromagnetic field, the quantization cor,dition being 

2ge = ncii f l€N (1) 
(where e is electric charge, g is magnetic charge and c is velocity of light), arising 
from the singlevaluedness requirement of the wavefunction. The corresponding 
Schrodinger equation can be straightforwardly evaluated, see Tamm [23, as well as 
the propagator (Martinez [3]), leading to a pure continuous spectrum of an electron 
moving in the field of a magnetic monopole. More general is the Dyon problem, where 
a Coulomb-interaction term a e g l r  is included. This problem has a long history and 
has been discussed by several authors, see e.g. Barut et al [4], Bose [5], Jackiw [6], 
Schwinger [7], for discussions including spin see DHoker  and Vinet [8] or the scattering 
of Dyons (Schwinger et al [9]). Of course, the Dyon system has been studied by path 
integration, where Kleinert [ 101 had used a Kustaanheimo-Steifel transformation 
approach, Durr and lnomata [ 111 started with a parabolic coordinate formulation and 
Chetouani et a/ [12] used polar coordinates from the very beginning. In each case a 
spacetime transformation is needed [13] and the quantization condition (1) arose, 
however, in various formulations. The much simpler case of the Dirac monopole 
deserves no spacetime transformation [14]. 

More elaborated monopole models have been developed since and monopole 
solutions seem to be inevitable in grand unified theories [15]. Important examples are 
the Bogomolnyi-Prasad-Sommerfield (BPS) monopoles [ 16,171 and Kaluza-Klein 
monopoles [18, 191, the latter emerging from a static solution of the classical field 
equations from the former (Taub NUT limit), respectively monopole solutions of 
five-dimensional Kaluza-Klein gravity [ZO], where the relevant metric is given by [19] 
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1112 C Grosche 

Here three-dimensional polar coordinates ( r ,  e,+) in combination with x5 =8m+ [21] 
are used and 

1 
1+(4m/r)  A( r )  = A, = 4m(l -cos 8). (3) 

The singularity at the origin vanishes if the coordinate JI is cyclic with period 16am 
[21]. A thorough study of the classical and quantum properties of the BPS monopoles 
is due to Gibbons and Manton [17] and they also showed that the Taub NUT limit 
leeds surprisingly to a Coulomb-like Schrodinger equation which is, of course, exactly 
solvable. The metric (2) was used by Bernido [21] and Junker and Inomata [22] to 
establish a path integral solution of this problem in terms of polar coordinates. However, 
as shown by Gibbons and Manton, this specific monopole problems admits due to its 
symmetry properties (e.g. Cordani et al [IS]) also a solution in parabolic coordinates 
which is quite different from the Dyon problem, being not separable in parabolic 
coordinates. [Durr and Inomata [ l l ]  started their discussion of the Dyon in parabolic 
coordinates to establish the quantization condition ( l ) ,  but later on in their calculation 
they had to switch back to polar coordinates.] 

In this paper, I want t o  present the Kaluza-Klein monopole problem in a path 
integral formulation in terms of parabolic coordinates. Whereas the polar coordinate 
system is more interesting for the study of bound states, the parabolic coordinate 
system is more suited to the study of scattering problems. 

Similar attempts to solve the same problem in different coordinate systems have 
also been discussed in the Coulomb problem. After the original solution by Dum and 
Kleinert [13] numerous authors calculated the path integral problem of the hydrogen 
atom in terms of polar coordinates (see e.g. [23,24] and references therein) and 
eventually in parabolic coordinates (Chetouani and Hammann [25]). The motivation 
thus remains all the time the same, i.e. to achieve as much insight as possible in the 
system in question and obtain new exact path integral solutions in order to 'build up 
quantum mechanics from a point of view of fluctuating paths' [13]. 

The paper is organized as follows: In the next section we set up our notation and 
describe shortly the construction of path integrals in curved spaces. In section 3 we 
discuss the Kaluza-Klein monopole system in terms of parabolic coordinates. We start 
in a specific (radial) coordinate system, and switch after separating the cyclic variable 
to parabolic coordinates. In  our discussion we therefore show that the Kaluza-Klein 
monopole system is actually separable in parabolic coordinates. Wavefunctions and 
energy-spectrum for bound and scattering states will be explicitly derived. The section 
4 contains a summary and in the appendix the correct normzlization of the bound 
state wavefunctions is shown. 

2. Formulation of the path integral 

In order to set up our notation we proceed in the canonical way for the formulation 
of path integrals on curved spaces [23,26]. We start with the generic case by considering 
the classical Lagrangian corresponding to the line element ds2 = go, dq" dqh of the 
classical motion in some D-dimensional Riemannian space 



Kaluza- Klein monopole in parabolic coordinates 1773 

The quantum Hamiltonian is constructed by means of the Laplace-Beltrami operator 

as a definition of the quantum theory on a cunred space. Here g=det(gab) and 
(gab) = (gab)-'. The scalar product for wavefunctions on the manifold reads 

(1; g )  = 1 d 9  f i f * ( 9 M 9 )  ( 6 )  

and the momentum operators which are Hermitian with respect to this scalar product 
are given by 

The metric tensor is rewritten as a product according to gab = h.,h,,. Then we obtain 
for the Hamiltonian ( 5 )  

(8) 
h2 1 

H = -- A L B +  V(q) =- h"'papbhcb +AV(q) + V(9) 
2m 2m 

the path integral 

K(9", 9'; T )  =I 9 9 ( t )  e x p [ i  I,: [T h,,h,,,q"qb - V(q)-AV(q)  dt  1 1  

(10) 
h2 

8m 
+-(2h"'hb', ,b-hh~,~hb'.b-h.' ,bhb',~).  

Here A9(;,= 9( , , -9 ( j - , )  for 9 ( j , = 9 ( t ' + j ~ )  ( E  = ( t " - t ' ) / N =  TIN,  j =  1 , .  . . , N )  with 
a well defined lattice formulation arising from the ordering prescription for position 
and momentum operators in the quantum Hamiltonian [27]. 

3. Kaluza-Klein monopole in parabolic coordinates 

In order to describe the Kaluza-Klein monopole system we start (following Inomata 
and Junker [22]) with the static solution, where the relevant metric is given by ( l ) ,  (2). 
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The corresponding Lagrangian of a test particle with mass M consequently has the form 

- [ i2+ r2( b2+sin2 e$’)]+ (4m)2A( r)[$+( 1 -cos O)$]’ 

-- - { i 2 + r 2 i 2 + [ r 2 s i n 2  8+[4mA(r)12(1-cos S)2]$2 
2 N r )  
+ [4mA(r)I2@+2[4mA( *)I2( 1 -cos e ) $ $ )  

Hence the metric has the form [21] 

11 0 0 0 \ 
0 0 

r2sin’ O+[4mA(r)]2(1-cos [4mA(r)12(1-cos 8) 
[4mA(r)12(1-cos 8 )  

with 

and its inverse (gob) 

0 0 \ 

\O 0 - (1-cos8)/(r2sin28)  I/[4mA(r)]2+(l-cos B)’ / ( r2s in ’8 ) /  

The canonical momenta 

are Hermitian with respect to the scalar product 

and the quantum potential A V  has the form 

A V ( r ,  8 )  = -- 8MR ( 1 +A). 
Therefore we have for the quantum Hamiltonian 
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The construction of the path integral is straightforward yielding 

K ( x " ,  x'; T) 

= K(r", r', 0", 8', +", +', $", $'; T )  

A 

Here f(q;jJ):=f(ql,~,,)f(q,,)) for any function f of coordinates. In order to evaluate 
this path integral we start by performing a Fourier expansion in the variable $ ( k  
denotes some parameter to be more specified later): 

1 "  
K (x", x'; T )  = __ 1 e i ! 4 " - u ? J  K,(r", r', 8", 0', +", 4'; T )  

16vm k--m 

(20) 

Kk(r", r', O", 0 ' ,  +", +'; T )  = K ( x " ,  x'; T )  e- ik(u-$ ' i  d,,," 

This gives for the kernel K,(T) 

K,(r", r', 0", 0',  $", 4'; T )  
3 N l 2  

- - 1 lim (") 
4m[A(r')A(r")]"4 N-m 2r i&h  

i N  m h 

xexp - 2 [A2r(j,+ r;,,A28<,,]+ kh(1 -= OljJ)A41jl 

R2k2 
+ &fizA(ri j j) ( 1 +7 1 )}) 

--E 
32mZA4A(rI,,) SA4rfjJ sin' o ~ , ~  



1776 C Grosche 

Therefore, we could perform a separation in terms of monopole harmonics [ 2 2 ]  

K,(r",  r', 0", e', b", 6'; T )  

= _  1 "  J ( J + f )  e K M - I W ~ + " - + ' l ~ J '  (cos 0')D' v ) K  ( 
M . k  M. k , r", r'; T )  

271 I = I k l  M = - l  

( 2 2 )  

with the remaining radial path integral 

and evaluate the path integral ( 2 3 )  by space-time transfonnation technique. However, 
this is not our point here; we instead perform the transformation to parabolic coor- 
dinates 

x=.$7cos@J y = (7 sin q5 z =f(q'- (2) t, 7 3 0, 
( 2 4 )  

t'= r + z  = r(1 + cos 6) 7 2 =  r - z  = r(1 -cos 6) 

which gives for the path integral ( 2 1 )  

Kk(r",  r', e", O', +", 4'; T )  

Kk(5", t', 7", 7'. 6", 6'; T )  

Note the new quantum potential A V = - h 2 A ( r ) / 8 M t 2 7 2 ,  . f + q 2 = 2 r  and we leave for 
convenience A ( r )  as it stands. We perform the time transformation [ 2 9 ]  

This gives the transformation formulae 

&(5", C', 17". 17'. 4". 6'; T )  

Gk(C,  t', v", v', 4", 4'; E ) = i  kk(c, t', 7". q', $", 6'; s") ds" lom 
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Here q = 4mk and in the &;)-integrations we have extended the interval [O, 2?r] to the 
entire R, which is standard [ZSl. The path integrals K,-, ,(s") and k ( s " )  are evaluated 
as 

L z * ( 5 1 ) ,  6,; S'') 
- 

where m i =  (2/ M)(fiiq'/2M - E). Here the well-known path integral identity [30,31] 

m o d 7 7  
ifi sin wT 

- - 
cot oT 1 I, ( i r J l z T )  

for radial path integrals has been applied with the functional measure p.[r2] 

(33) 

in order to guarantee a well-defined short-time kernel [23,31,32]. I, describes a 
modified Bessel function. 

We see that the separation procedure produces a term iShk'/Mr in (30) which in 
the case of the non-relativistic Dyon spoils the separability in parabolic coordinates. 
In the present case this term is cancelled by a term coming from the k2 summand in 
the exponent of (28). 

To obtain the bound state contribution of the Green function G , ( E )  we make use 
of the Hille-Hardy formula [33, p 10381: 
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(where L!? are Laguerrepolynomials), and get by performing the d'integration in (276) 
G'boYnd) 

x (5: e', T",  T ' ,  +", 4'; E )  

with the principal quantum number N=n,+n2+f lu-2kl+f lv l+l ,  and the energy 
,-..A,- ,__ 1 I.̂ - r., 
1 C Y C 1 S  ,J - + m y  - K, 

E -  N - ( 4 m ) 2 M  " m ( i N - m )  N s. (37) 

The wavefunctions have the form 

1 2 n,!n,! 
a3 N3= r( n ,  + I V  - 2kl+ l ) r (  n,+ Ivl+ 1) 

I 

where a=l/(NJqz-2€,M/h2)=14ml/[N(NrJN2-s2)]. Let us make some 
remarks about the quantization condition for k and s, respectively. We consider the 
interaction term (1 -cos 0) in (3). It corresponds in the path integral (21) to a vector 
potential&,=kfi(l-cos O)/(rsin 8) so that ( e / c ) ~ ~ x = k h ( l - c o s ~ ) ~ ~ h i c h i s s i n -  
gular at 8 = w. A, can be changed by a gauge transformafjon so that A -A = VX with 
X = 2 k A +  (e.g. [12], also [ 2 1 ] )  into 9 vector potential A,=-kh(l+cos fl) /(rsin0) 
which is singular at 8 = O  (A, and A, correspond to the regions a j and k )  of the 
Wu-Yang potential [34 ] ,  respectively). The Feynman kernel corresponding to A, differs 
from the one of A, by a phase factor e2ik'm"-"1 and the requirement of the single- 
valuedness ofthe wavefunctions before and after the transformation thus gives 2s =2k E 

N, i.e. a Dirac-like quantization condition is satisfied. 
These wavefunctions are correctly normalized (see the appendix). Using the 

expansion (compare j36, p i5Sj ) :  

-exp[-(x+y) cot all2,  
1 

sin a 

r(f+W+ip)r(f+ p - i p )  
r2( 1 + 2 W )  

we obtain the continuous contribution of G k ( E )  

G','"""(f", f ,  q", 7'. +", +'; E )  

(39) 

(40) 

with the energy spectrum 

fi' E,, = - ( p 2 + q 2 )  2M (41) 
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and the wave-functions 

VYP.6”(5, 11. 4)  

4. Discussion 

In this paper we have studied the Kaluza-Klein monopole system by path integrals 
in parabn!ic coordinates. We have f c x d  that ix this coordinste sys:em :he pio::em 
is completely separable in contrast to the non-relativistic Dyon system. The energy 
spectrum of the bound states has the form 

J?3(*N-V5?7)  N 3 s. 
f i 2  

E -  
N - ( 4 m ) 2 M  

The constraints on boznd st2tes are that on the one hand 

and on the other 

(43) 

This is in accordance with [ l l ,  171. Gibbons and Manton [I71 argued that the energy 
levels with the ‘-’ signs are artefacts of the asymptotic (Taub NUT) approximation. 
The levels with the ‘+’ sign give for N >> s 

which exhibits a Coulomb-like behaviour. 
Let us note that we can calculate the entire Green function 

GdF, r‘, n”, n’, 4”, 4’; E )  
- - @““d) I; (e: 5’; 7”: n‘: 4’’: e’; E)+G‘,‘“““(C? 5‘; 7”; n‘; 4”; 4’; E )  (47) 

in closed form by using the ‘addition theorem’ [35, vol 11, p 991: 

- J , (zs ina  sinp)J,,(zcosrr c o s p )  
2 
z 

=(sin a sin @)”(cos a cos p)” 

x 2 F , ( - l ,  w +  v + l + l ;  v + l ;  sin2 a) 

x2FI(-l, w +  u + l + l ;  v + l ;  s in2p) .  
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This yields (note that it is more convenient t o  switch back to polar coordinates and 
we assume without loss of generality r " 2  r')  

m T(A,  + A > +  /+  l ) r (A,+ r + 1) 
i!r2( A I + 1)T(A2+ l + 1) 

x 1 (A,+A,+21+1) 
I = O  

- l ,A,+A,+/+l ;A,+l ;s in  - "1 2 

-/, A I + A~ + I + 1; A I + 1 ; sin2 - "'1 2 

( A ,  = lu-2k1, A 2 =  IvI, a = 4 m [ E  - ( q 2 h 2 / M ) ] ) ,  w asin(31.32) andthe PPb'(x)  denote 
Jacobi polynomials. This is basically the result of [21,22]. Here we have used the 
integral representation [33, p 10591 

lom (coth;)'" ex.( -%bcosh x) 12,,(m sinh x)  d x  

(where M,,,, W,,+ are Whittaker functions), performed in the  integration the substitu- 
tion U=-ius", together with a Wick rotation, followed by a second substitution 
sinh x = l/sinh U. Thus we have established an independent solution of the Kaluza- 
Klein monopole path integral problem in an alternative coordinate system. 
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Appendix. Check of the normalization of the bound state wavefunctions 

Let us check the normalization of the bound state wavefunctions (38). We have 

2 n , ! n , !  
r ( n ,  + l ~ - 2 k ( +  i )r (n ,+lv l+  1) 

Here use has been made of the integral formula [36, p 1431 

r(1 + / L + A )  
= ( - ] ) A  

A - n  

X 

(a ,=s+( ru ,+a , ) /2 ,  a 2 = s - ( a , + a 2 ) / 2 ,  a,=aoa2+2a,a,)  and I haveexplicitlyinser- 
ted a = 1 4 m l / [ N ( N - m ) ] .  Note that only for the ‘+’ sign in (43) we have 
[lVN/l > O .  Thus the wavefunctions Y N ( c ,  7.4) have the correct normalization. 
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